Differentiation of reactive-like astrocytes cultured on nanofibrillar and comparative culture surfaces.

نویسندگان

  • Volkan Müjdat Tiryaki
  • Virginia M Ayres
  • Ijaz Ahmed
  • David I Shreiber
چکیده

AIM To investigate the directive importance of nanophysical properties on the morphological and protein expression responses of dibutyryladenosine cyclic monophosphate (dBcAMP)-treated cerebral cortical astrocytes in vitro. MATERIALS & METHODS Elasticity and work of adhesion characterizations of culture surfaces were performed using atomic force microscopy and combined with previous surface roughness and polarity results. The morphological and biochemical differentiation of dBcAMP-treated astrocytes cultured on promising nanofibrillar scaffolds and comparative culture surfaces were investigated by immunocytochemistry, colocalization, super resolution microscopy and atomic force microscopy. The dBcAMP-treated astrocyte responses were further compared with untreated astrocyte responses. RESULTS & CONCLUSION Nanofibrillar scaffold properties were shown to reduce immunoreactivity responses while poly-L-lysine-functionalized Aclar® (Ted Pella Inc., CA, USA) properties were shown to induce responses reminiscent of glial scar formation. The comparison study indicated that directive cues may differ in wound-healing versus quiescent situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes

Cerebral cortical astrocyte responses to polyamide nanofibrillar scaffolds versus poly-L-lysine (PLL)-functionalized planar glass, unfunctionalized planar Aclar coverslips, and PLL-functionalized planar Aclar surfaces were investigated by atomic force microscopy and immunocytochemistry. The physical properties of the cell culture environments were evaluated using contact angle and surface rough...

متن کامل

Increased FGF-2 secretion and ability to support neurite outgrowth by astrocytes cultured on polyamide nanofibrillar matrices.

An electrospun nonwoven matrix of polyamide nanofibers was employed as a new model for the capillary basement membrane at the blood-brain barrier (BBB). The basement membrane separates astrocytes from endothelial cells and is associated with growth factors, such as fibroblast growth factor-2 (FGF-2). FGF-2 is produced by astrocytes and induces specialized functions in endothelial cells, but als...

متن کامل

In Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells

Neural stem cells (NSCs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (SVZ) and the hippocampus of the adult brain. NSCs can give rise to neurons, astrocytes and oligodendrocytes. The aim of this study was to differentiate neural stem cells into noradrenergic–like cells in...

متن کامل

Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium

The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...

متن کامل

Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium

The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanomedicine

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2015